Chronic Hyperglycemia and Glucose Toxicity: Pathology and Clinical Sequelae

Carlos Campos, MD, MPH
November 2012

Abstract: Type 2 diabetes mellitus (DM) is a progressive disease characterized by elevated plasma glucose levels. Type 2 DM results from a combination of factors affecting both peripheral tissue insulin sensitivity and β-cell function. A survey of the scientific literature on DM, glucose toxicity, hyperglycemia, nephropathy, neuropathy, reactive oxygen species, and retinopathy cited on PubMed/Medline from January 1975 to May 2011 was conducted. The relevant publications, chosen at the author’s discretion, were used to synthesize this narrative review article. Chronic hyperglycemia imposes damage (glucose toxicity) on a number of cell types and is strongly correlated with the myriad of DM-related complications. Tissues most vulnerable to the effects of prolonged elevated plasma glucose levels include pancreatic β cells and vascular endothelial cells. The ensuing β-cell dysfunction promotes decreased insulin synthesis and secretion, further perpetuating the associated hyperglycemia. As for the vascular endothelium, chronic hyperglycemia is strongly correlated with many DM-related microvascular complications, including retinopathy, nephropathy, and neuropathy. The role of hyperglycemia in macrovascular complications is not well defined. Pathophysiologic modifications that arise in response to chronic hyperglycemia persist and may promote DM-related complications that manifest years later, even if plasma glucose levels have been brought under control. Increasing awareness of the mechanisms by which even modest hyperglycemia promotes long-lasting tissue damage highlights the need to achieve early tight glycemic control in patients with DM before substantial disease progression.